
## Berechnungen am Kreis:

 $A_{Kreis},\,u_{Kreis},\,A_{Kreisausschnitt},\,Kreisbogen\,\,b,\,Bogenmaß$  arc  $\alpha$ 



Dies ist ein Einheitskreis. Es ist ein Kreis mit dem Radius 1.

$$A_{Kreis} = \pi \cdot r^{2}$$

$$= \pi \cdot r \cdot r$$

$$= 3.14 \cdot 1 \text{cm} \cdot 1 \text{cm}$$

$$= 3.14 \text{ cm}^{2}$$

$$A_{\text{Kreisausschnitt}} = \frac{\alpha}{360^{\circ}} \cdot \pi \cdot r^{2}$$

$$= \frac{\alpha}{360^{\circ}} \cdot \pi \cdot r \cdot r$$

$$= \frac{60^{\circ}}{360^{\circ}} \cdot 3,14 \cdot 1 \text{ cm} \cdot 1 \text{ cm}$$

$$= 0,52\overline{3} \text{ cm}^{2}$$

$$u_{Kreis} = \pi \cdot d$$

$$= \pi \cdot 2 \cdot r$$

$$= 3,14 \cdot 2 \cdot 1 \text{ cm}$$

$$= 6,28 \text{ cm}$$

Kreisbogen b = 
$$\frac{\alpha}{360^{\circ}} \cdot \pi \cdot d$$
  
=  $\frac{\alpha}{360^{\circ}} \cdot \pi \cdot 2 \cdot r$   
=  $\frac{60^{\circ}}{360^{\circ}} \cdot 3,14 \cdot 2 \cdot 1 \text{ cm}$   
=  $\frac{1,04\overline{6} \text{ cm}}{600}$ 

## Das Bogenmaß des Winkels $\alpha$

Bogenmaß des Winkels  $\alpha = \frac{L\ddot{a}nge\ des\ Kreisbogens}{L\ddot{a}nge\ des\ Radius}$ 

$$\operatorname{arc}\left(\alpha\right) = \frac{b}{r}$$

(Arkus = Bogen)

arc 
$$(\alpha) = \frac{b}{r}$$

arc 
$$(\alpha) = \frac{\frac{\alpha}{360^{\circ}} \cdot \pi \cdot d}{r}$$

arc (
$$\alpha$$
) =  $\frac{\frac{\alpha}{360^{\circ}} \cdot \pi \cdot 2 \cdot r}{r}$ 

$$\operatorname{arc}(\alpha) = \frac{\alpha}{180^{\circ}} \cdot \pi$$

Bogenmaß des Winkels  $\alpha = 60^{\circ}$  im Einheitskreis berechnen:

arc 
$$(\alpha) = \frac{\alpha}{180^{\circ}} \cdot \pi$$

arc (
$$\alpha$$
) =  $\frac{60^{\circ}}{180^{\circ}} \cdot 3,14$ 

arc (
$$\alpha$$
) =  $1.04\overline{6}$  cm

## Merke:

Beim Einheitskreis (Radius r = 1) gilt:

Kreisbogens b = Bogenmaß arc ( $\alpha$ )