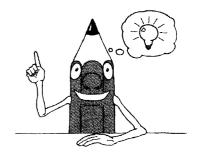
Aufgabe 1:

Suche die Primzahlen heraus und unterstreiche sie.

1			102			91	
		29		103			
17			49			53	
		107		41			
43			97		21		
	65		2			89	
							\mathcal{I}

Es sind 10 Primzahlen.

Aufgabe 2:


Zerlege in Primfaktoren.

- a) 18
- b) 24
- c) 30
- d) 42
- e) 36

Aufgabe 3:

Zerlege in Primfaktoren.

- a) 175
- b) 250
- c) 240
- d) 360
- e) 125

Aufgabe 4:

Schneide die Domino-Karten aus.

Suche die Domino-Karten mit einer Primzahl heraus.

Ordne nun die Primzahlen der Größe nach. Beginne dabei mit der kleinsten Primzahl.

Die Buchstaben ergeben ein Lösungswort.

Klebe die Domino-Karten in dieser Reihenfolge in dein Heft ein.

15	A	7	S	69	L	29	Р
13	U	21	М	83	R	41	E

Lösung zum Domino:

7	S	13	U	29	Р
41	E	83	R		

Das Lösungswort lautet: SUPER

Aufgabe 5:

Ist 2 · 3 · 91 die Primfaktorzerlegung von 546?

Begründe deine Antwort!

Aufgabe 6:

Gib vier Zahlen an, die nur die Primfaktoren 3 und 7 besitzen.

Knobelaufgabe 1:

Ein magisches Quadrat ist eine Anordnung von Zahlen in einem quadratischen Gitter, sodass die Summen in den Zeilen, Spalten und Diagonalen jeweils gleich sind.

Ergänze das Quadrat:

67	1	43
13		

Wenn du das magische Quadrat richtig ausgefüllt hast, kommen nur Primzahlen und die Zahl 1 vor.

Knobelaufgabe 2:

Ergänze das magische Quadrat mit Primzahlen, sodass die Summen in den Zeilen, Spalten und Diagonalen jeweils gleich sind.

		19	37
	31	5	41
	11		
67	17		13

Lösung Aufgabe 1:

Suche die Primzahlen heraus und unterstreiche sie.

							_
1			102			91	
		<u>29</u>		<u>103</u>			
<u>17</u>			49			<u>53</u>	
		<u>107</u>		<u>41</u>			
<u>43</u>			<u>97</u>		21		
	65		<u>2</u>			<u>89</u>	,

Lösung Aufgabe 2:

Zerlege in Primfaktoren.

a) $18 = 2 \cdot 3 \cdot 3$

b) $24 = 2 \cdot 2 \cdot 2 \cdot 3$

c) $30 = 2 \cdot 3 \cdot 5$

d) $42 = 2 \cdot 3 \cdot 7$

e) $36 = 2 \cdot 2 \cdot 3 \cdot 3$

Lösung Aufgabe 3:

Zerlege in Primfaktoren.

a) $175 = 5 \cdot 5 \cdot 7$

b) $250 = 2 \cdot 5 \cdot 5 \cdot 5$

c) $240 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5$

d) $360 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5$

e) $125 = 5 \cdot 5 \cdot 5$

Lösung Aufgabe 5:

Ja, 2 · 3 · 91 ist die Primfaktorzerlegung von 546.

Wenn das Produkt ausgerechnet wird, kommt als Ergebnis 546 heraus.

Lösung Aufgabe 6:

Gib vier Zahlen an, die nur die Primfaktoren 3 und 7 besitzen.

Dies können zum Beispiel sein:

 $3 \cdot 7 = 21$

 $3 \cdot 3 \cdot 7 = 63$

 $3\cdot 3\cdot 7\cdot 7=441$

 $3 \cdot 3 \cdot 3 \cdot 7 \cdot 7 = 1323$

Lösung Knobelaufgabe 1:

67	1	43
13	37	61
31	73	7

Lösung Knobelaufgabe 2:

Ergänze das magische Quadrat mit Primzahlen, sodass die Summen in den Zeilen, Spalten und Diagonalen jeweils gleich sind.

3	61	19	37
43	31	5	41
7	11	73	29
67	17	23	13