Stochastik (Wahrscheinlichkeit)

Grundbegriffe der Stochastik

Urliste Ungeordnete Zusammenstellung Ausgaben in der Woche:

der beobachteten Ergebnisse (12 ϵ , 24 ϵ , 2 ϵ , 110 ϵ , 17 ϵ)

Rangliste Nach Größe geordnete Urliste Ausgaben in der Woche:

(2 €, 12 €, 17 €, 24 €, 110 €)

Strichliste Auflistung der Ergebnisse in einer Münzwurf

Strichliste

Zahl III IIII
Wappen IIII III I

Häufigkeitsliste

Absolute Häufigkeit = wie oft ein Ergebnis aufgetreten ist

Relative Häufigkeit = $\frac{\text{absolute Häufigkeit eines Wertes}}{\text{Gesamtzahl aller Werte}}$

Ergebnis	abs. H.	rel. H.
Zahl	9	$\frac{9}{20}$ = 45%
Wappen	11	$\frac{11}{20}$ = 55%

Statistische Kennwerte

Mittelwert (Arithmetisches Mittel)

 $\mathbf{m} = \underline{\mathbf{a}_1 + \mathbf{a}_2 \dots + \mathbf{a}_n}_{\mathbf{n}}$

Werte addieren

und durch die Anzahl der Werte dividieren

Zentralwert (Median)

wenn Anzahl der Werte ungerade --> Wert ist genau in der Mitte

(1,2,<u>**6**</u>,14,20)

wenn Anzahl der Werte gerade —> Durchschnitt der beiden mittleren

Werte bilden (1,2,<u>**6,14**</u>,19, 20)

 $\frac{6+14}{2} = \frac{20}{2} = \underline{10}$

Häufigster Wert (Modalwert) Am häufigsten vorkommender Wert einer Liste

(Es kann mehrere Modalwerte geben)

Minimalwert (Min) Kleinster Wert der Liste
Maximalwert (Max) Größter Wert der Liste

Spannweite d Differenz zwischen dem größten und kleinsten Wert

Wahrscheinlichkeitsrechnung

Laplace-Versuche sind Versuche, bei denen alle Ergebnisse gleich wahrscheinlich sind.

P(E) bedeutet "Die Wahrscheinlichkeit, mit der ein Ereignis eintritt"

$$P (Ereignis) = \frac{Anzahl der günstigen Ergebnisse}{Anzahl aller möglichen Ergebnisse}$$

Die Wahrscheinlichkeit mit einem Würfel das Ereignis "Zahl 3" zu würfeln:

P (Zahl 3) =
$$\frac{1}{6} \approx 16,7 \%$$

 $P(ar{E})$ bedeutet "Die Wahrscheinlichkeit, mit der ein Gegenereignis eintritt"

$$P(\bar{E}) = 1 - P(E)$$

Die Wahrscheinlichkeit, mit einem Würfel das Ereignis "Zahl 3" nicht zu würfeln:

P (Nicht Zahl 3) = 1 -
$$\frac{1}{6} = \frac{5}{6} \approx 83,3 \%$$

Spezielle Ereignisse

Unmögliche Ereignisse Ein Ereignis, das bei keinem Versuch auftreten kann

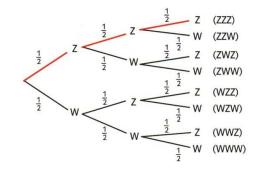
(Bsp: Würfeln einer Augenzahl größer als 6)

Sicheres Ereignis Ein Ereignis, das bei jedem Versuch auftritt

(Bsp: Würfeln einer Augenzahl von 1 bis 6)

Mehrstufige Zufallsversuche

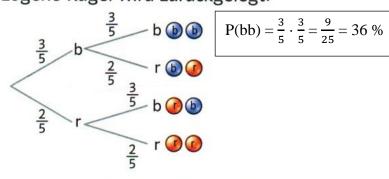
Wird ein Zufallsversuch zweifach (mehrfach) ausgeführt, spricht man von einem zweistufigen (mehrstufigen) Zufallsversuch.

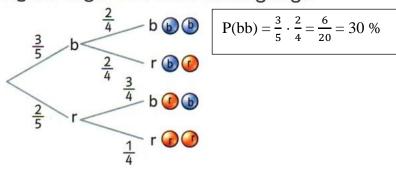

Dreistufiger Zufallsversuch: Die Wahrscheinlichkeit,

mit einer Münze dreimal Zahl zu werfen: P(ZZZ)

Darstellung als Baumdiagramm:

 $Produkt regel\ (Pfad regel):$


$$P(ZZZ) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$


Ziehen von Kugeln

Die gezogene Kugel wird zurückgelegt:

Die gezogene Kugel wird nicht zurückgelegt:

Vierfeldertafel

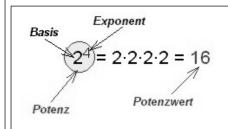
Wird eine Menge nach zwei verschiedenen Merkmalen mit je zwei Ausprägungen sortiert, kann man die Anteile in einer Vierfeldertafel übersichtlich darstellen.

	F	F	Σ
M	576	24	600
M	180	20	200
Σ	756	44	800

F = Fußballspieler

 \overline{F} = Keine Fußballspieler

 $M = M\ddot{a}nnlich$


 \overline{M} = Weiblich

 $\Sigma = \text{Summe}$

Zehnerpotenzen

Vielfache v	on Einheiten					
Vorsilbe	Deka (da)	Hekto (h)	Kilo (k)	Mega (M)	Giga (G)	Tera (T)
$10^0 = 1$	$10^{1}=10$	$10^2 = 100$	$10^3 = 1000$	10^{6}	10 ⁹	10^{12}
Bruchteile	von Einheiten					
Vorsilbe	Dezi (d)	Zenti (c)	Milli (m)	Mikro (µ)	Nano (n)	Piko (ρ)
	$10^{-1} = 0.1$	$10^{-2} = 0.01$	$10^{-3} = 0.001$	10^{-6}	10^{-9}	10^{-12}

Potenzen

Besonderheiten

$$a^0 = 1$$

$$4^0 = 1$$

$$a^{-n} = \frac{1}{a^n}$$

$$a^{-n} = \frac{1}{a^n}$$
 $2^{-3} = \frac{1}{2^3}$

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$
 (a, b \neq 0)

$$(a, b \neq 0)$$

Potenzgesetze

Gleiche Basis

$$a^m \cdot a^n = a^{m+n}$$

$$2^2 \cdot 2^3 = 2^{2+3} = 2^5$$

$$\frac{a^m}{a^n} = a^{m-n}$$

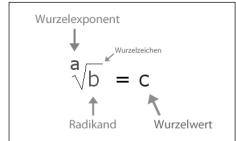
$$\frac{2^5}{2^3} = a^{5-3} = 2^2$$

Gleiche Exponenten

$$a^n \cdot b^n = (a \cdot b)^n$$

$$2^2 \cdot 3^2 = (2 \cdot 3)^2 = 6^2$$

$$\frac{a^n}{h^n} = \left(\frac{a}{h}\right)^n$$


$$\frac{4^3}{2^3} = \left(\frac{4}{2}\right)^3 = 2^3$$

Potenzieren von Potenzen

$$(a^m)^n = a^{m \cdot n}$$

$$(2^3)^4 = 2^{3\cdot 4} = 2^{12}$$

Wurzeln

Besonderheiten

Man kann Wurzeln auch als Potenzen mit Brüchen als Exponenten schreiben:

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$
 $\sqrt[2]{9} = 9^{\frac{1}{2}}$

$$\sqrt[2]{9} = 9^{\frac{1}{2}}$$

$$\frac{n}{\sqrt{am}} - a^{\frac{m}{n}}$$

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$
 $\sqrt[2]{9^4} = 9^{\frac{4}{2}} = 9^2$

$$\sqrt[n]{a^n} = a \qquad \sqrt[4]{7^4} = 7$$

$$\sqrt[4]{7^4} = 7$$

$$(a \ge 0, n > 0)$$

Quadratwurzel (oder Wurzel)

$$\sqrt{a} = b$$

Die Quadratwurzel aus einer positiven Zahl a ist b, wenn gilt: $b \cdot b = a$ $(\sqrt{25} = 5, \text{ weil } 5 \cdot 5 = 25)$

Kubikwurzel (oder dritte Wurzel)

$$\sqrt[3]{a} = b$$

Die Kubikwurzel aus einer positiven Zahl a ist b, wenn gilt: $b \cdot b \cdot b = a$ $(\sqrt[3]{8} = 2, \text{ weil } 2 \cdot 2 \cdot 2 = 8)$

Vierte Wurzel

$$\sqrt[4]{a} = b$$

Die vierte Wurzel aus einer positiven Zahl a ist b, wenn gilt: $b \cdot b \cdot b \cdot b = a$ $(\sqrt[4]{81} = 3, \text{ weil } 3 \cdot 3 \cdot 3 \cdot 3 = 81)$

n-te Wurzel

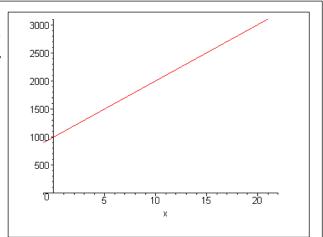
$$\sqrt[n]{a} = b$$

Die n-te Wurzel aus einer positiven Zahl a ist b, wenn gilt: $b^n = a$

Wachstum

Lineares Wachstum

Herr Maier verdient im ersten Jahr pro Monat $1000 \in \text{und erhält pro Jahr eine Gehaltszulage}$ von $100 \in \text{.}$


$$W_n = W_0 + m \cdot n$$

W₀ ist der Anfangswert

W_n ist der Wert nach n Zeitabschnitten

n ist die Anzahl der Zeitabschnitte

m ist Änderungsrate

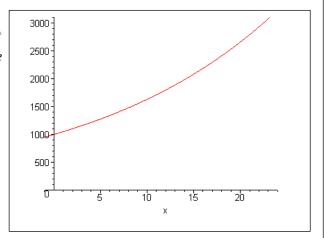
Änderungsrate m

für die Zunahme für die Abnahme

m>0 m<0

Exponentielles Wachstum

Herr Maier verdient im ersten Jahr pro Monat 1000 € und erhält pro Jahr eine Gehaltszulage von 5 %


$$\mathbf{W_n} = \mathbf{W_0} \cdot \mathbf{q}^n$$

W₀ ist der Anfangswert

 $W_n\,$ ist der Wert nach n Zeitabschnitten

q ist der Wachstumsfaktor

n ist die Anzahl der Zeitabschnitte

Wachstumsfaktor q

für die Zunahme für die Abnahme

 $q = 1 + \frac{p}{100}$ $q = 1 - \frac{p}{100}$

Wachstumsrate

bezeichnet den Prozentsatz des Wachstums $(\frac{p}{100})$

6

Rechenarten (Bezeichnung und Sprechweisen)

	Rechenart		Der Term heißt	a heißt	b heißt
1. Stufe	Addition	a + b	Summe	1. Summand	2. Summand
i. Stule	Subtraktion	a – b	Differenz	Minuend	Subtrahend
O Chufa	Multiplikation	a∙b	Produkt	1. Faktor	2. Faktor
2. Stufe	Division	a:b (b + 0)	Quotient	Dividend	Divisor
2 Chafe	Potenzieren	a ^b	Potenz	Basis (Grundzahl)	Exponent (Hochzahl)
3. Stufe	Radizieren	^b √a (a ≧ 0)	b-te Wurzel	Radikand	Wurzelexponent

Rechengesetze

Kommutativgesetz (Vertauschungsgesetz)

Addition a + b = b + aMultiplikation $a \cdot b = b \cdot a$

Assoziativgesetz (Verknüpfungsgesetz)

Addition a + (b + c) = (a + b) + cMultiplikation $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Distributivgesetz (Verteilungsgesetz)

 $a \cdot (b + c) = a \cdot b + a \cdot c$ $a \cdot (b - c) = a \cdot b - a \cdot c$

Erweitertes Distributivgesetz (Summen, Differenzen multiplizieren)

 $(a + b) \cdot (c + d) = a \cdot c + a \cdot d + b \cdot c + b \cdot d$ $(a + b) \cdot (c - d) = a \cdot c - a \cdot d + b \cdot c - b \cdot d$ $(a - b) \cdot (c + d) = a \cdot c + a \cdot d - b \cdot c - b \cdot d$ $(a - b) \cdot (c - d) = a \cdot c - a \cdot d - b \cdot c + b \cdot d$

Plusklammer und Minusklammer

Plusklammer auflösen: Minusklammer auflösen:

a + (b + c) = a + b + c a - (b + c) = a - b - c

a + (b - c) = a + b - c a - (b - c) = a - b + c

Rechenregeln bei rationalen Zahlen

Addition und Subtraktion:

Aus ++ wird + $+\cdot+=+$ +:+=+

Multiplikation:

Division:

Aus -- wird + - · - = + - : - = +

Aus +- wird - + \cdot - = - + : - = -

Aus - + wird - - \cdot + = - - : + = -

Binomische Formeln

Zweigliedrige Terme der Form (a + b) oder (a - b) nennt man Binome. Beim Multiplizieren und Potenzieren gilt:

1. binomische Formel
$$(a + b)^2 = a^2 + 2ab + b^2$$

2. binomische Formel
$$(a - b)^2 = a^2 - 2ab + b^2$$

3. binomische Formel
$$(a + b) \cdot (a - b) = a^2 - b^2$$

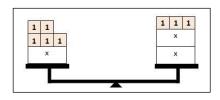
Gleichungen

Term

Terme sind mathematisch sinnvolle Ausdrücke, die aus Zahlen. Rechenzeichen und Variablen bestehen können.

Werden für die Variablen Zahlen eingesetzt, dann kann der Wert des Terms berechnet werden.

Gleichung


Werden zwei Terme durch ein Gleichheitszeichen verbunden, dann entsteht eine Gleichung.

Lösungsmenge

Zahlen, die beim Einsetzen die Gleichung erfüllen, gehören zur Lösungsmenge der Gleichung.

10y 2x-5 oder

Der Wert des Terms 2x-5 für die Variable x=4 beträgt: $2 \cdot 4 - 5 = 3$

$$x + 5 = 2x + 3$$

$$\mathbb{L} = \{2\}$$

Lineare Gleichungssysteme

Ι Rechnerisches Lösen Zeichnerisches Lösen y = 3x - 1II y = x + 1Gleichsetzungsverfahren Schnittpunkt der beiden Geraden bestimmen Einsetzungsverfahren

Additionsverfahren

 $\mathbb{L} = \{(1; 2)\}$

Fall 2: Geraden sind parallel zueinander → keine Lösung

 $\mathbb{L} = \{ \}$

Fall 3: Geraden liegen genau aufeinander → unendlich viele Lösungen

Quadratische Gleichungen

Rein quadratische Gleichungen

Allgemeine Form: $ax^2 = c$

$$x^2 = \frac{c}{a}$$

$$x_{1,2} = \pm \sqrt{\frac{c}{a}}$$

Diskriminante D = $\frac{c}{a}$

→ zwei Lösungen Fall 1: D>0

Fall 2: D=0 → eine Lösung

Fall 3: D<0 → keine Lösung

Gemischt quadratische Gleichungen

Normalform: $x^2 + px + q = 0$

$$x^2-2x-4=0$$
 $(p=-2, q=-4)$

$$(p=-2, q=-4)$$

p,q-Formel:
$$x_{1/2} = -\frac{p}{2} \pm \sqrt{(\frac{p}{2})^2 - q}$$

$$x_{1/2} = -\frac{-2}{2} \pm \sqrt{(\frac{-2}{2})^2 - (-4)}$$

Diskriminante D =
$$(\frac{p}{2})^2 - q$$

→ zwei Lösungen Fall 1: D>0

→ keine Lösung Fall 3: D<0

Die Lösungsmenge gibt die Nullstellen der Parabel an

Gemischt quadratische Gleichungen mit Hilfe einer quadratischen Ergänzung lösen

Zahlenbeispiel

$$x^2 + 6x + 8 = 0$$

$$x^2 + 6x + 3^2 + 8 = 0 + 3^2$$

$$(x+3)^2 = 9-8$$

$$x_{1,2} + 3 = \pm \sqrt{9 - 8}$$

$$x_{1,2} = -3 \pm \sqrt{9-8}$$

Allgemein

$$x^2 + px + q = 0$$

$$x^{2} + px + \left(\frac{p}{2}\right)^{2} + q = 0 + \left(\frac{p}{2}\right)^{2}$$
$$\left(x + \frac{p}{2}\right)^{2} = \left(\frac{p}{2}\right)^{2} - q$$

$$x_{1,2} + \frac{p}{2} = \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

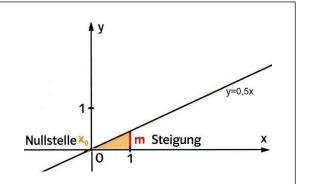
$$x_{1,2} = -\frac{p}{2} \pm \sqrt{(\frac{p}{2})^2 - q}$$

Funktionen

Proportionale Funktionen

Funktionsgleichung

$$y = m \cdot x$$


oder

$$f(x) = m \cdot x$$

Gerade geht durch den Ursprung P(0|0)

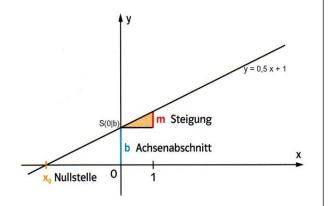
Nullstelle N (0|0)

Steigung m = $\frac{y}{x}$

Lineare Funktionen

Funktionsgleichung

$$y = m \cdot x + b$$
 ode


$$f(x) = m \cdot x + b$$

Gerade schneidet die y-Achse im Punkt $S_v(0|b)$

Nullstelle N (x_o|0)

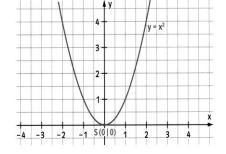
Steigung m =
$$\frac{y-b}{x}$$

y-Achsenabschnitt b

Es gilt:

Gerade steigend, wenn m>0

Gerade fallend, wenn m<0


Quadratische Funktionen

Funktionsgleichung für die Normalparabel

$$y=x^{\mathbf{2}}$$

$$f(x) = x^2$$

Parabel berührt den Ursprung mit dem Scheitelpunkt S(0|0)Nullstelle $N\left(0|0\right)$

Quadratische Funktionen

Parabeln der Form $y = ax^2$

Scheitelpunkt S(0|0) Nullstelle N(0|0)

Der Faktor a bestimmt die Öffnung der Parabel:

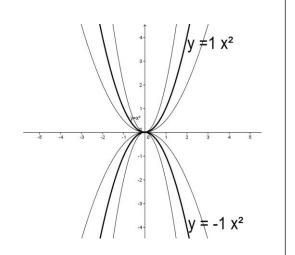
a > 1 Parabel schmaler als Normalpa	abel	
-------------------------------------	------	--

nach oben geöffnet

a = 1 Normalparabel nach oben geöffnet

0 < a < 1 Parabel breiter als Normalparabel

nach oben geöffnet


-1 < a < 0 Parabel breiter als Normalparabel

nach unten geöffnet

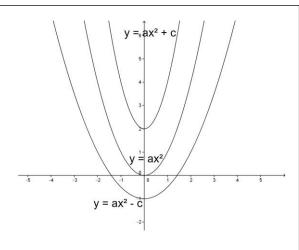
a = -1 Normalparabel nach unten geöffnet

a < -1 Parabel schmaler als Normalparabel

nach unten geöffnet

Parabeln der Form $y = ax^2 + c$

Verschiebung der Parabel entlang der y-Achse


c > 0 Parabel wird im Abstand c

nach oben verschoben

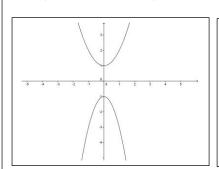
c = 0 Parabel mit dem Scheitelpunkt S(0|0)

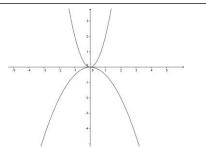
c < 0 Parabel wird im Abstand c

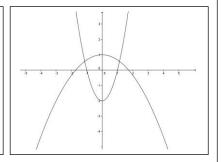
nach unten verschoben

Nullstellen

Keine Nullstellen


a > 0, c > 0 oder a < 0, c < 0


Eine Nullstelle


a > 0, c = 0 oder a < 0, c = 0

Zwei Nullstellen

a > 0, c < 0 oder a < 0, c > 0

Parabeln der Form $y = a(x + b)^2$

Verschiebung der Parabel entlang der x-Achse

b > 0 Parabel wird im Abstand b

nach links verschoben

b = 0 Parabel mit dem Scheitelpunkt S(0|0)

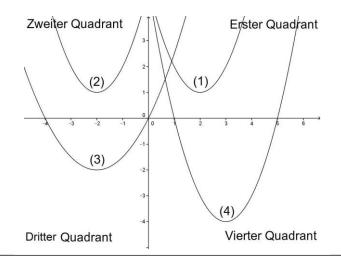
b < 0 Parabel wird im Abstand b

nach rechts verschoben

Parabeln der Form $y = a(x + b)^2 + c$

Scheitelpunkt S der Parabel im

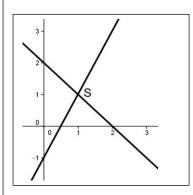
ersten Quadranten: b < 0, c > 0 (1)


zweiten Quadranten: b > 0, c > 0 (2) dritten Quadranten: b > 0, c < 0 (3)

vierten Quadranten: b < 0, c < 0 (4)

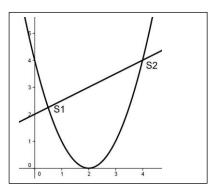
Bestimmung der Nullstellen:

Funktion Null setzen


und p,q-Formel anwenden

Schnittpunkte von zwei Funktionen bestimmen

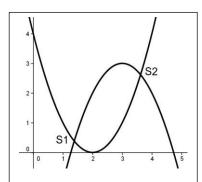
durch Gleichsetzen der beiden Funktionen


Zwei Geraden schneiden sich

I y = -x+2 II y = 2x-1

-x+2 = 2x - 1

Gerade und Parabel schneiden sich



I y = 0.5x - 2

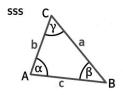
II $y = (x-2)^2$

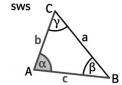
 $0.5x - 2 = (x - 2)^2$

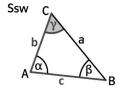
Zwei Parabeln schneiden sich

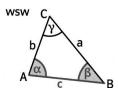
 $I y = (x-2)^2$

II $y = -(x-3)^2 + 3$


 $(x-2)^2 = -(x-3)^2 + 3$


Trigonometrie

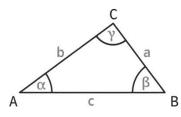

Kongruente Dreiecke

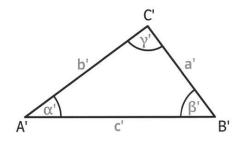

Zwei Dreiecke sind kongruent, wenn eine der vier Bedingungen erfüllt ist:

- 1. Die Dreiecke stimmen in drei Seiten überein. (sss)
- 2. Die Dreiecke stimmen in zwei Seiten und dem eingeschlossenen Winkel überein. (sws)
- 3. Die Dreiecke stimmen in zwei Seiten überein und die Gegenwinkel der längeren Seite sind gleich groß. (Ssw)
- 4. Die Dreiecke stimmen in einer Seite und den anliegenden Winkeln überein. (wsw)

Ähnliche Dreiecke

Zwei Dreiecke sind zueinander ähnlich, wenn für die Winkel gilt:

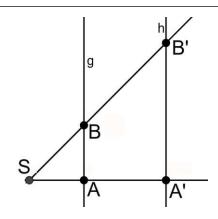

$$\alpha = \alpha'$$
 und $\beta = \beta'$ und $\gamma = \gamma'$


Zwei Dreiecke sind zueinander ähnlich, wenn die Längenverhältnisse zweier entsprechender Seiten gleich sind.

$$\frac{a}{b} = \frac{a'}{b'}$$

$$\frac{a}{c} = \frac{a'}{c'}$$

$$\frac{b}{c} = \frac{b'}{c'}$$

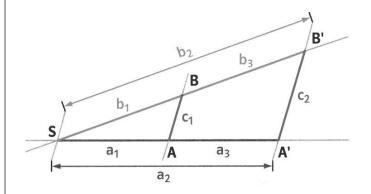


Werden zwei Strahlen,

die von einem Punkt S ausgehen,

von zueinander parallelen Geraden g und h geschnitten,

so entstehen zwei Dreiecke SAB und SA'B', die zueinander ähnlich sind.

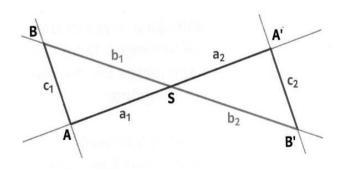


13

Strahlensätze

Die Strahlensätze gelten nur in einer Strahlensatzfigur. Diese besteht aus zwei sich schneidenden Strahlen und aus einem Parallelenpaar, welches die Strahlen schneidet.

Strahlensätze bei der V-Form

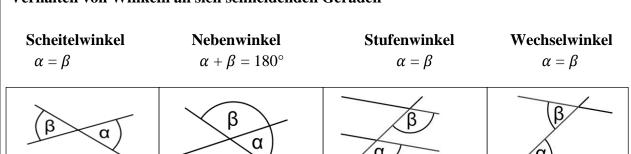

Erster Strahlensatz:

$$\frac{a1}{a2} = \frac{b1}{b2} \qquad \text{und} \quad \frac{a1}{a3} = \frac{b1}{b3}$$

Zweiter Strahlensatz:

$$\frac{a1}{a2} = \frac{c1}{c2} \qquad \text{und} \quad \frac{b1}{b2} = \frac{c1}{c2}$$

Strahlensätze bei der X-Form


Erster Strahlensatz:

$$\frac{a1}{a2} = \frac{b1}{b2}$$

Zweiter Strahlensatz:

$$\frac{a1}{a2} = \frac{c1}{c2} \qquad \text{und} \quad \frac{b1}{b2} = \frac{c1}{c2}$$

Verhalten von Winkeln an sich schneidenden Geraden

Winkelfunktionen

Das Verhältnis zwischen 2 Seiten im rechtwinkligen Dreieck wird berechnet.

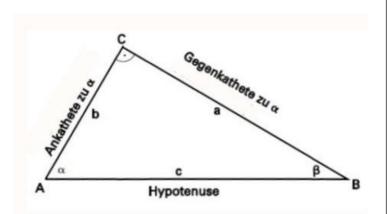
Vom Winkel α aus gesehen

 $\sin \alpha = \frac{Gegenkathete}{Hypotenuse}$

Gegenkathete = $\sin \alpha \cdot \text{Hypotenuse}$

Hypotenuse = $\frac{Gegenkathete}{\sin \alpha}$

 $\cos \alpha = \frac{Ankathete}{Hypotenuse}$

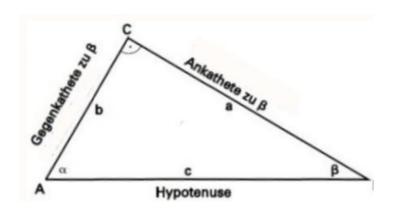

Ankathete = $\cos \alpha \cdot \text{Hypotenuse}$

Hypotenuse = $\frac{Ankathete}{\cos \alpha}$

 $\tan \alpha = \frac{Gegenkathete}{Ankathete}$

Gegenkathete = $\tan \alpha \cdot Ankathete$

Ankathete = $\frac{Gegenkathete}{tan \alpha}$

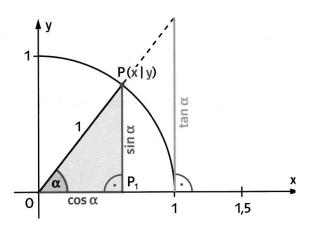


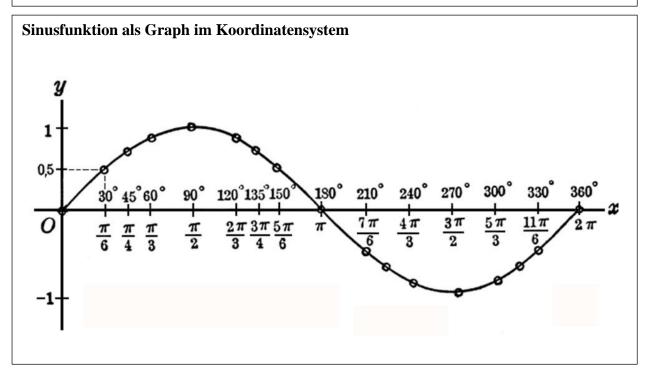
Vom Winkel β aus gesehen

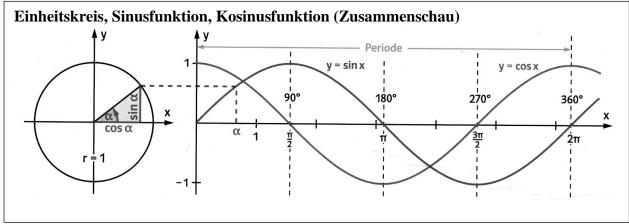
$$\sin \beta = \frac{Gegenkathete}{Hypotenuse}$$

$$\cos \beta = \frac{Ankathete}{Hypotenuse}$$

$$\tan \beta = \frac{Gegenkathete}{Ankathete}$$

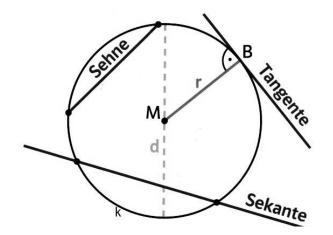



Besondere Werte


	0 °	30°	45°	60°	90°	120°	135°	150°	180°
$\sin \alpha$	0	0,5			1			0,5	0
cos α	1			0,5	0	-0,5			-1
tan α	0		1		-		-1		0

Sinus, Kosinus und Tangens im Einheitskreis

Im Einheitskreis mit dem Radius r = 1 LE (Längeneinheit) kann man den Sinuswert, den Kosinuswert und den Tangenswert eines eingezeichneten Winkels annäherungsweise ablesen.


Kreis und Kreisteile

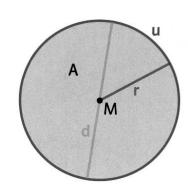
Der **Kreisdurchmesser** ist doppelt so lang wie der Kreisradius (d = 2r).

Eine **Sehne** ist eine Strecke zwischen zwei Punkten auf der Kreislinie k.

Eine **Tangente** ist eine Gerade und berührt die Kreislinie k. Sie steht senkrecht auf dem Berührradius r.

Eine **Sekante** ist eine Gerade, die die Kreislinie in zwei Punkten schneidet.

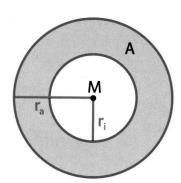
Umfang


$$u_{Kreis} = \pi \cdot d$$

$$u_{Kreis} = 2 \cdot \pi \cdot r$$

Flächeninhalt

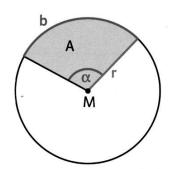
$$A_{Kreis} = \pi \, \cdot \, r^{\textbf{2}}$$


$$A_{Kreis} = \frac{\pi \cdot d^2}{4}$$

Kreisring

$$A_{\text{Kreisring}} = \pi \cdot r_a^2 - \pi \cdot r_i^2$$

$$A_{\text{Kreisring}} = \pi \cdot (r_a^2 - r_i^2)$$



17

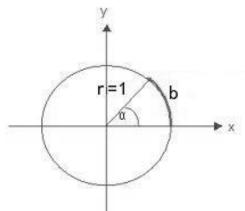
Kreisausschnitt

$$A_{Kreisausschnitt} = \frac{\alpha}{360^{\circ}} ~\cdot \pi ~\cdot r^{2}$$

$$A_{Kreisausschnitt} = \frac{b \cdot r}{2}$$

Kreisbogen

$$b = \frac{\alpha}{360^{\circ}} \cdot \pi \cdot d$$

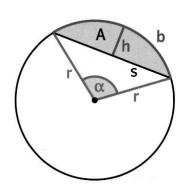

$$b = \frac{\alpha}{360^{\circ}} \cdot 2 \cdot \pi \cdot \mathbf{r}$$

Das Bogenmaß des Winkels a

Bogenmaß des Winkels $\alpha = \frac{L\ddot{a}nge\ des\ Kreisbogens}{L\ddot{a}nge\ des\ Radius}$

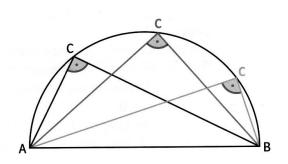
$$\operatorname{arc}\left(\alpha\right) = \frac{b}{r}$$

(Arkus = Bogen)

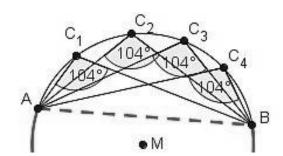


Beim Einheitskreis gilt:

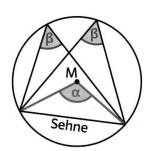
Kreisbogens $b = Bogenma\beta$ arc (α)

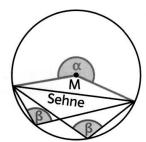

Kreisabschnitt (Segment)

$$A_{\text{Kreisabschnitt}} = \frac{r^2}{2} \cdot (\pi \cdot \frac{\alpha}{180^{\circ}} - \sin \alpha)$$

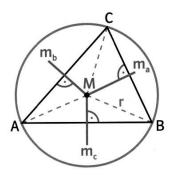

Satz des Thales

Liegt der Punkt C eines Dreiecks ABC auf einem Halbkreis über der Strecke \overline{AB} , dann ist der Winkel bei C ein rechter Winkel.


Satz vom Umfangswinkel


Alle Umfangswinkel (=Rand- oder Peripheriewinkel) über der gleichen Seite einer Sehne \overline{AB} sind gleich groß.

Der Umfangswinkel β über einer Sehne ist halb so groß wie der vom Mittelpunkt entgegengesetzte Mittelpunktswinkel α .



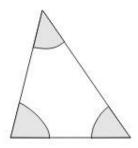
Besondere Kreise am Dreieck


Umkreis

Die drei Mittelsenkrechten des Dreiecks ABC schneiden sich in einem Punkt, dem Umkreismittelpunkt M. r ist der Umkreisradius.

Inkreis

Die drei Winkelhalbierenden des Dreiecks ABC schneiden sich in einem Punkt, dem Inkreismittelpunkt W. r ist der Inkreisradius.


19

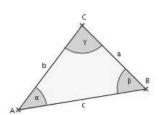
Geometrische Figuren

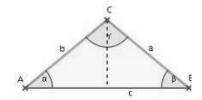
Dreiecke

Dreiecksarten (bezeichnet nach den Winkelgrößen)

Spitzwinkliges Dreieck Rechtwinkliges Dreieck

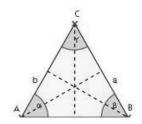
3 spitze Winkel


1 rechter Winkel


1 stumpfer Winkel

Dreiecksarten (bezeichnet nach den Seitenlängen)

Allgemeines Dreieck Gleichschenkliges Dreieck


$$a \neq b \neq c$$

 $\alpha \neq \beta \neq \gamma$

$$a = b$$

 $\alpha = \beta$

Gleichseitiges Dreieck

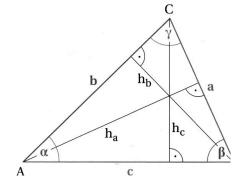
Stumpfwinkliges Dreieck

$$a = b = c$$

 $\alpha = \beta = \gamma = 60^{\circ}$

Umfang

 $u_{Dreieck} = a + b + c$


Flächeninhalt

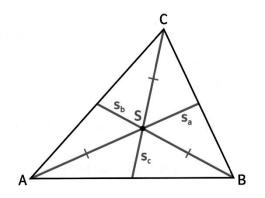
$$A_{\text{Dreieck}} = \frac{c \cdot h_c}{2}$$

$$A_{\text{Dreieck}} = \frac{b \cdot h_b}{2}$$

$$a \cdot h_a$$

$$A_{\text{Dreieck}} = \frac{a \cdot h_a}{2}$$

$$A_{Dreieck} = \frac{a \cdot b}{2} \cdot \sin \gamma$$
$$A_{Dreieck} = \frac{b \cdot c}{2} \cdot \sin \alpha$$


$$A_{\text{Dreieck}} = \frac{a \cdot c}{2} \cdot \sin \beta$$

Winkelsumme im Dreieck: $\alpha + \beta + \gamma = 180^{\circ}$

Seitenhalbierende und Schwerpunkt

Die drei Seitenhalbierenden schneiden sich in einem Punkt, dem Schwerpunkt S.

Der Schwerpunkt S teilt jede Seitenhalbierende im Verhältnis 2:1

Satz des Pythagoras

Im rechtwinkligen Dreieck ist der Flächeninhalt des Quadrates über der Hypotenuse gleich der Summe der Flächeninhalte der Quadrate über den beiden Katheten.

$$c^2 = a^2 + b^2$$

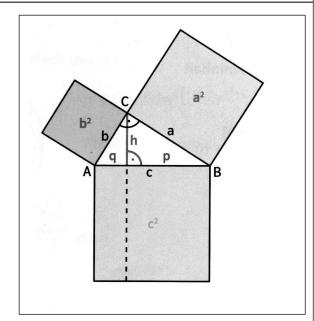
Daraus folgt:

$$a^2 = c^2 - b^2$$

$$b^2 = c^2 - a^2$$

Berechnung der Hypotenuse c

$$c^2 = a^2 + b^2$$


$$c = \sqrt{a^2 + b^2}$$

Berechnung der Kathete a

$$a = \sqrt{c^2 - b^2}$$

Berechnung der Kathete b

$$b = \sqrt{c^2 - a^2}$$

Höhensatz:

Ist ein Dreieck rechtwinklig mit $\gamma = 90^{\circ}$, dann gilt:

$$h^2 = p \cdot q$$

Kathetensatz:

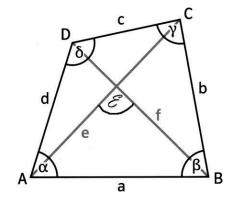
Ist ein Dreieck rechtwinklig mit $\gamma = 90^{\circ}$, dann gilt:

$$a^2 = c \cdot p$$

$$b^2 = c \cdot q$$

21

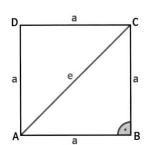
Vierecke


Allgemeines Viereck

Umfang

 $u_{Allgemeines\; Viereck} = a + b + c + d$

Flächeninhalt


$$A_{\text{Allgemeines Viereck}} = \frac{e \cdot f}{2} \cdot \sin \varepsilon$$

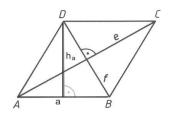
Winkelsumme im Viereck

$$\alpha + \beta + \gamma + \delta = 360^{\circ}$$

Quadrat

Umfang:

$$u_{Quadrat} = 4 \, \cdot \, a$$

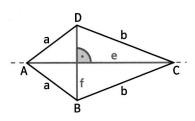

Flächeninhalt

$$A_{Ouadrat} = a^2$$

Länge der Diagonale

$$_{e\,=\,a}\cdot\sqrt{2}$$

Raute


Umfang:

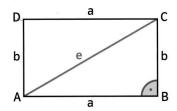
$$u_{Raute} = 4 \, \cdot \, a$$

Flächeninhalt

$$A_{Raute} = \frac{e \cdot f}{2}$$
 $A_{Raute} = a \cdot h_a$
 $A_{Raute} = b \cdot h_b$

Drachen

Umfang:


$$\begin{aligned} u_{Drachen} &= 2 \cdot a + 2 \cdot b \\ u_{Drachen} &= 2 \cdot (a + b) \end{aligned}$$

Flächeninhalt

$$A_{Drachen} = \frac{e \cdot f}{2}$$

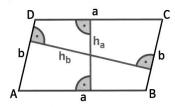
22

Rechteck

Umfang:

$$u_{Rechteck} = 2 \cdot a + 2 \cdot b$$

 $u_{Rechteck} = 2 \cdot (a + b)$

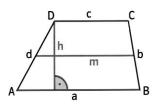

Flächeninhalt

$$A_{Rechteck} = a \cdot b$$

Länge der Diagonale

$$_{\rm e} = \sqrt{a^2 + b^2}$$

Parallelogramm


Umfang:

$$u_{Parallelogramm} = 2 \cdot a + 2 \cdot b$$

 $u_{Parallelogramm} = 2 \cdot (a + b)$

Flächeninhalt

$$A_{Parallelogramm} = a \cdot h_a$$

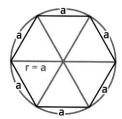
 $A_{Parallelogramm} = b \cdot h_b$

Trapez

Umfang:

$$u_{\text{Trapez}} = a + b + c + d$$

Flächeninhalt


$$A_{Trapez} = \frac{a+c}{2} \cdot h$$

$$A_{Trapez} = m \cdot h$$

Für das gleichschenklige Trapez gilt: b=d

Vielecke

Regelmäßiges Sechseck

Umfang

 $u_{\text{Regelm\"{a}Biges Sechseck}} = 6 \cdot a$

Flächeninhalt

$$A_{\text{Regelmäßiges Sechseck}} = \, \frac{3 \cdot a^2}{2} \cdot \sqrt{3}$$

Umfang

$$u_{Regelm\ddot{a}\beta iges\ n\text{-}Eck} = n\cdot a$$

Regelmäßiges n-Eck

Flächeninhalt

$$A_{\text{Regelmäßiges Sechseck}} = \frac{n \cdot a \cdot h_a}{2}$$

Winkelsumme im n-Eck

$$(n-2) \cdot 180^{\circ}$$

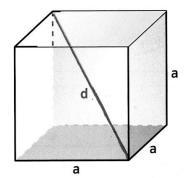
Anzahl der Diagonalen im n-Eck

$$d = \frac{n \cdot (n-3)}{2}$$

Geometrische Körper

Würfel

Oberfläche


 $O_{W\ddot{u}rfel}\,=6\,\cdot\,a^{\textbf{2}}$

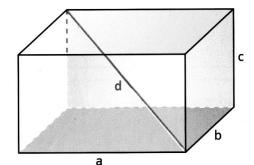
Volumen

 $V_{\rm Wiirfel} = a^3$

Länge der Raumdiagonale

$$d = a \cdot \sqrt{3}$$

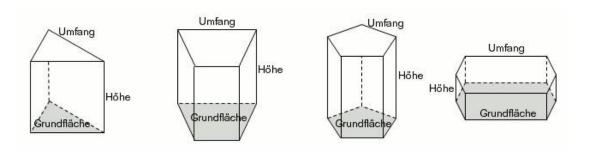
Quader


Oberfläche

$$O_{Ouader} = 2 \cdot a \cdot b + 2 \cdot a \cdot c + 2 \cdot b \cdot c$$

$$O_{Ouader} = 2 \cdot (a \cdot b + a \cdot c + b \cdot c)$$

Volumen


$$V_{Ouader} = a \cdot b \cdot c$$

Länge der Raumdiagonale

$$d = \sqrt{a^2 + b^2 + c^2}$$

Prisma

Mantelflächeninhalt

$$M_{Prisma} = u \cdot h$$

Oberflächeninhalt

$$O_{Prisma} = 2 \cdot A_G + M$$

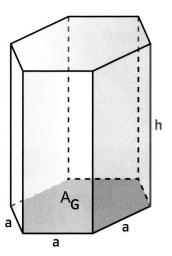
Volumen

$$V_{Prisma} = A_G \cdot h$$

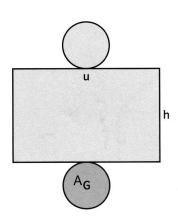
24

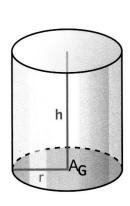
Regelmäßiges Sechsecksprisma

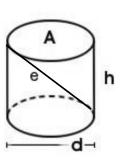
Mantelflächeninhalt


 $M_{\text{Sechsecksprisma}} = 6 \cdot a \cdot h$

Oberflächeninhalt


$$O_{Sechsecksprisma} = 3 \cdot \alpha^2 \cdot \sqrt{3} + 6 \cdot a \cdot h$$


Volumen


$$V_{Sechsecksprisma} = \frac{3 \cdot a^2}{2} \cdot \sqrt{3} \cdot h$$

Kreiszylinder

Mantelflächeninhalt

$$\begin{aligned} M_{Kreiszylinder} &= u \, \cdot h \\ M_{Kreiszylinder} &= 2 \, \cdot \pi \, \cdot r \, \cdot h \end{aligned}$$

Volumen

$$\begin{split} V_{Kreiszylinder} &= A_G \cdot h \\ V_{Kreiszylinder} &= \pi \cdot r^2 \cdot h \end{split}$$

Raumdiagonale

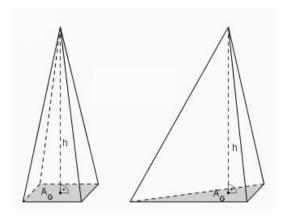
$$e = \sqrt{d^2 + h^2}$$

Oberfläche

$$\begin{aligned} O_{\text{Kreiszylinder}} &= 2 \cdot A_{\text{G}} + M \\ O_{\text{Kreiszylinder}} &= 2 \cdot \pi \cdot r^2 + M \end{aligned}$$

25

Pyramide


Allgemeine Pyramide

Oberfläche

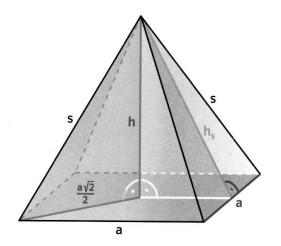
$$O_{Pyramide} = A_G + M$$

Volumen

$$V_{Pyramide} = \frac{A_G \cdot h}{3}$$

Quadratische Pyramide

Mantelflächeninhalt


$$M_{\text{Quadratische Pyramide}} = 2 \cdot a \cdot h_{\text{S}}$$

Oberflächeninhalt

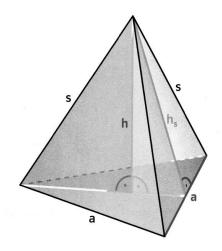
$$O_{Quadratische\ Pyramide} = a^2 + 2 \cdot a \cdot h_s$$

Volumen

$$V_{\text{Quadratische Pyramide}} = \frac{a^2 \cdot h}{3}$$

Regelmäßige Dreieckspyramide

Mantelflächeninhalt


$$M_{\text{Regelm\"{a}Bige Dreieckspyramide}} = \frac{3}{2} \cdot a \cdot h_{\text{S}}$$

Oberflächeninhalt

$$O_{Regel m \ddot{a} \\ \textrm{Bige Dreiecks pyramide}} = \frac{a^2}{4} \cdot \sqrt{3} + \frac{3}{2} \cdot a \cdot h_{S}$$

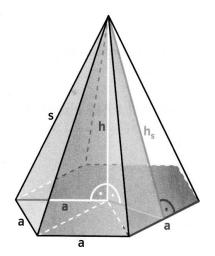
Volumen

$$V_{\text{Regelmäßige Dreieckspyramide}} = \frac{a^2}{12} \cdot \sqrt{3} \cdot h$$

26

Regelmäßige Sechseckspyramide

Mantelflächeninhalt


 $M_{\text{Regelm\"{a}Bige Sechseckspyramide}} = 3 \cdot a \cdot h_s$

Oberflächeninhalt

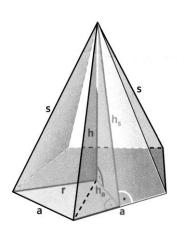
 $O_{\text{Regelmäßige Sechseckspyramide}} = \frac{3}{2} \cdot a^2 \cdot \sqrt{3} + 3 \cdot a \cdot h_s$

Volumen

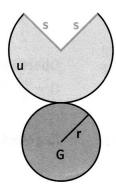
 $V_{\text{Regelmäßige Sechseckspyramide}} = \frac{a^2}{2} \cdot \sqrt{3} \cdot h$

Regelmäßige n-Ecks-Pyramide

Mantelflächeninhalt


 $M_{\text{Regelm\"{a}Bige n-Eckspyramide}} = n \cdot \frac{a \cdot h_s}{2}$

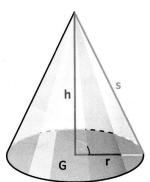
Oberflächeninhalt


 $O_{\text{Regelmäßige n-Eckspyramide}} = A_G + n \cdot \frac{a \cdot h_s}{2}$

Volumen

 $V_{\text{Regelmäßige n-Eckspyramide}} = \frac{A_G \cdot h}{3}$

Kegel



Mantelflächeninhalt

 $M_{\text{Kegel}} = \pi \cdot r \cdot s$

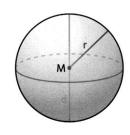
Oberflächeninhalt

$$O_{\text{Kegel}} = A_G + M$$
 $O_{\text{Kegel}} = \pi \cdot r^2 + \pi \cdot r \cdot s$
 $O_{\text{Kegel}} = \pi \cdot (r^2 + r \cdot s)$

Volumen

$$V_{Kegel} = \frac{A_G \cdot h}{3}$$

27

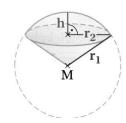

Kugel

Oberflächeninhalt

$$O_{Kugel}\,=4\,\cdot\,A_{Kreis}$$

$$O_{Kugel} = 4 \cdot \pi \cdot r^2$$

$$O_{Kugel} = \pi \cdot d^2$$



Volumen

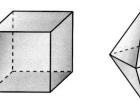
$$V_{\text{Kugel}} = \frac{4}{3} \cdot \pi \cdot r^3$$

$$O_{Kugelausschnitt} =$$

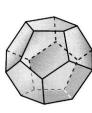
$$\pi \cdot r_1 \cdot r_2 + 2 \cdot \pi \cdot r_1 \cdot h$$

$$V_{\text{Kugelausschnitt}} = \frac{2 \cdot \pi}{3} \cdot r_1^2 \cdot h$$

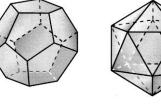
Regelmäßige Körper (Platonische Körper)

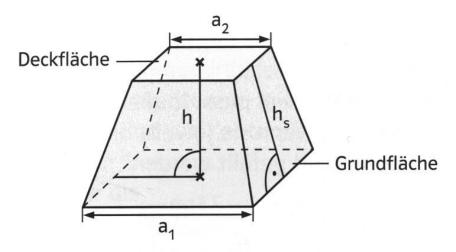

Bei regelmäßigen Körpern besteht die Oberfläche nur aus kongruenten Vielecken. Es gibt genau 5 regelmäßige Körper:

	1	
/		
		\


Tetraeder

Würfel




Dodekaeder

Ikosaeder

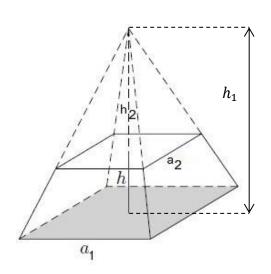
Seitenflächen 4 gleichseitige	Seitenflächen 6 Quadrate	Seitenflächen 8 gleichseitige	Seitenflächen 12 regelmäßige	Seitenfläche 20 gleichseitige
Dreiecke		Dreiecke	Fünfecke	Dreiecke
Eckenzahl	Eckenzahl	Eckenzahl	Eckenzahl	Eckenzahl
4	8	6	20	12
Kantenzahl	Kantenzahl	Kantenzahl	Kantenzahl	Kantenzahl
6	12	12	30	30
Oberfläche	Oberfläche	Oberfläche	Oberfläche	Oberfläche
$O=a^2\sqrt{3}$	O=6a ²	$O=2a^2\sqrt{3}$	O= $3a^2\sqrt{5(5+2\sqrt{5})}$	$O=5a^2\sqrt{3}$
Volumen $V = \frac{a^3}{12} \sqrt{2}$	Volumen V=a ³	Volumen $V=\frac{a^3}{3}\sqrt{2}$	Volumen $V = \frac{a^3}{4}(15 + 7\sqrt{5})$	Volumen $V = \frac{5a^3}{12}(3+\sqrt{5})$

Quadratischer Pyramidenstumpf

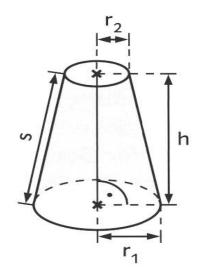
Mantelflächeninhalt

$$M_{Pyramidenstumpf} = 2 \cdot (a_1 + a_2) \cdot h_s$$

Oberflächeninhalt


$$O_{\text{Pyramidenstumpf}} = a_1^2 + 2 \cdot (a_1 + a_2) \cdot h_s + a_2^2$$

Volumen


$$V_{Pyramidenstumpf} = \frac{1}{3} \cdot h \cdot (a_1^2 + a_1 \cdot a_2 + a_2^2)$$

oder

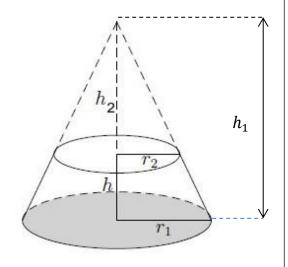
$$V_{\text{Pyramidenstumpf}} = V_{\text{Große Pyramide}} - V_{\text{Kleine Pyramide}} - \frac{a_1^2 \cdot h_1}{3} - \frac{a_2^2 \cdot h_2}{3}$$

Kegelstumpf

Mantelflächeninhalt

$$M_{\text{Kegelstumpf}} = \pi \cdot s \cdot (r_1 + r_2)$$

Oberflächeninhalt


$$O_{\text{Kegelstumpf}} = \pi \cdot (r_1^2 + s \cdot (r_1 + r_2) + r_2^2)$$

Volumen

$$V_{\text{Kegelstumpf}} = \frac{1}{3} \cdot \pi \cdot \mathbf{h} \cdot (r_1^2 + r_1 \cdot r_2 + r_2^2)$$

oder

$$\begin{aligned} & V_{\text{Kegelstumpf}} = \\ & V_{\text{Großer Kegel}} - V_{\text{Kleiner Kegel}} = \\ & \frac{\pi \cdot r_1^2 \cdot h_1}{3} - \frac{\pi \cdot r_2^2 \cdot h_2}{3} \end{aligned}$$

Sachrechnen

Prozentrechnung

G Grundwert

Prozentwert

p%**Prozentsatz**

$$1\% = \frac{1}{100} = 0.01$$

Prozentwert P berechnen (Grundformel):

$$\mathbf{P} = \mathbf{G} \cdot \frac{p}{100}$$

Prozentsatz p% berechnen

$$p\% = \frac{\mathbf{P} \cdot \mathbf{100}}{\mathbf{G}}$$

Grundwert G berechnen

$$G = \frac{P \cdot 100}{p}$$

Der Prozentwert entspricht der absoluten Häufigkeit.

Der Prozentsatz entspricht der relativen Häufigkeit.

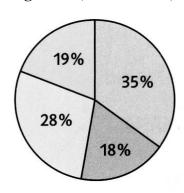
$$\mathbf{G}^+ = \mathbf{G} \cdot (1 + \frac{p}{100})$$

$$W_n = W_0 \cdot q$$

Verminderter Grundwert

$$\mathbf{G}^{-} = \mathbf{G} \cdot (1 - \frac{p}{100})$$

$$\mathbf{W}_{\mathrm{n}} \! = \! \mathbf{W}_{\mathrm{0}} \! \cdot \! \mathbf{q}$$
 Wachstumsfaktor q $\mathbf{W}_{\mathrm{n}} \! = \! \mathbf{W}_{\mathrm{0}} \! \cdot \! \mathbf{q}$


Wachstumsfaktor q

Darstellung von Prozentsätzen in Diagrammen

Streifendiagramm (Prozentstreifen)

35% 18% 28% 19% 20% 40% 60% 0% 80% 100

Kreisdiagramm (Prozentkreis)

Die gesamte Streifenlänge veranschaulicht 100%.

Bei Streifenlänge 10 cm gilt:

100% *≙* 100 mm

1% **≙** 1 mm

100% *≙* 360°

 $1\% \triangleq 3.6^{\circ}$

Sachrechnen

Promillerechnung

G Grundwert

P Promillewert

p ‰ Promillesatz

$$1 \%_{00} = \frac{1}{1000} = 0,001$$

Promillewert P berechnen (Grundformel):

$$\mathbf{P} = \mathbf{G} \cdot \frac{p}{1000}$$

Promillesatz p‰ berechnen

$$p\%_0 = \frac{P \cdot 1000}{G}$$

Grundwert G berechnen

$$G = \frac{P \cdot 1000}{p}$$

Der Promillewert entspricht der absoluten Häufigkeit.

Der Promillesatz entspricht der relativen Häufigkeit.

Begriffe bei der Warenkalkulation

Bezugspreis Der Einzelhändler kauft die Ware zu einem Bezugspreis ein

Geschäftskosten Kosten, die im Geschäft entstehen (Transport, Miete, Energie, ...)

Selbstkostenpreis = Bezugspreis + Geschäftskosten

Gewinn Geldsumme, wie viel der Händler an der Ware verdienen will

Nettoverkaufspreis = Selbstkostenpreis + Gewinn

Mehrwertsteuer Steuer, die das Finanzamt erhält

Bruttoverkaufspreis Nettoverkaufspreis + Mehrwertsteuer

Rabatt (Mengennachlass, Sondernachlass)

Skonto Abzug vom Bruttopreis, Preisnachlass bei schneller Bezahlung

Bruttolohn Lohn zuzüglich der gesetzlichen Abgaben

(Steuern, Sozialversicherungen)

Nettolohn Lohn ohne die gesetzlichen Abgaben

(Lohn, der nach den Steuern und gesetzlichen Abgaben bleibt)

32

Zinsrechnung

K Kapital

Z Zinsen

p% Zinssatz

Berechnungen für den Zeitraum von 1 Jahr:

Zinsen Z berechnen (Grundformel)

$$\mathbf{Z} = \mathbf{K} \cdot \frac{p}{100}$$

Zinssatz p% berechnen

$$p\% = \frac{\mathbf{Z} \cdot 100}{\mathbf{K}}$$

Grundwert G berechnen

$$K = \frac{\mathbf{Z} \cdot 100}{p}$$

Berechnungen für Zeiträume unter 1 Jahr

$$\mathbf{Z} = \mathbf{K} \cdot \frac{p}{100} \cdot \frac{m}{12}$$

$$\mathbf{Z} = \mathbf{K} \cdot \frac{p}{100} \cdot \frac{t}{360}$$

m Zeit in Monaten

t Zeit in Tagen

Sparformen (Verzinsung)

Zuwachssparen (Verzinsung über n Jahre mit gleichbleibendem Zinssatz)

$$\mathbf{K}_{\mathbf{n}} = \mathbf{K}_{\mathbf{0}} \cdot \mathbf{q}^{\mathbf{n}}$$

K₀ ist das Anfangskapital

K_n ist das Kapital nach n Jahren

q ist der Zinsfaktor $(q = 1 + \frac{p}{100})$

n ist die Anzahl der Jahre

Zuwachssparen (Verzinsung über n Jahre mit unterschiedlichen Zinssätzen)

$$\mathbf{K_n} = \mathbf{K_0} \cdot \mathbf{q_1} \cdot \mathbf{q_2} \cdot \dots \cdot \mathbf{q_n}$$

q_n ist der Zinsfaktor im n-ten Jahr

Im Bankwesen gilt: 1 Jahr hat 360 Tage; 1 Monat hat 30 Tage

2	2
J	J

	Brüche und Bruchrechnen				
Bruch erweitern Bruch kürzen	$\frac{a}{b} = \frac{a \cdot c}{b \cdot c}$ $a = a : c$	Ungleichnamige Brüche addieren	$\frac{a}{c} + \frac{b}{d} =$ $\frac{a \cdot d}{c \cdot d} + \frac{b \cdot c}{d \cdot c} =$		
Gleichnamige Brüche addieren	$\frac{a}{b} = \frac{a : c}{b : c}$ $\frac{a}{c} + \frac{b}{c} = \frac{a + b}{c}$	Ungleichnamige Brüche	$\frac{a \cdot d + b \cdot c}{c \cdot d}$ $\frac{a}{c} - \frac{b}{d} =$		
Gleichnamige Brüche subtrahieren	$\frac{a}{c} - \frac{b}{c} = \frac{a - b}{c}$	subtrahieren	$\frac{a \cdot d}{c \cdot d} - \frac{b \cdot c}{d \cdot c} =$ $\frac{a \cdot d - b \cdot c}{c \cdot d}$		
Brüche multiplizieren	$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$				
Brüche dividieren	$\frac{a}{b}: \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a}{b}$	$\frac{\cdot d}{\cdot c}$			

Zahlenmengen			
Natürliche Zahlen N	$\mathbb{N} = \{0;1;2;3;\ldots\}$		
Ganze Zahlen Z	$\mathbb{Z} = \{; -3; -2; -1; 0; 1; 2; 3;\}$		
Rationale Zahlen @			
Reelle Zahlen $\mathbb R$	$\mathbb{R} = \{\dots; -\pi; \dots, -2, 5, \dots, -1, \frac{3}{4}; \dots; 0; \dots; \sqrt{2}; \dots; 1, \frac{3}{4}; \dots; 2, 5; \pi; \dots\}$		
Es gilt: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$	(⊂ bedeutet: echte Teilmenge von)		

Größen und ihre Einheiten

Länge umrechnen

(km - m - dm - cm - mm)

Kilometer	Meter	Dezimeter	Zentimeter	Millimeter
1 km =	1000 m	76, 82	emoioV =	ktor 113, 116
SALES CASHING	1 m	10 dm	= 100 cm =	1000 mm
		1 dm	= 10 cm =	100 mm
	re strapach	POT In	1 cm =	10 mm

 $(mm - \mu m - nm)$

Millimeter	Mikrometer	Nanometer
1 mm	1000 um	
	1 um =	1000 nm

Flächeninhalt umrechnen

 $(km^2 - ha - a - m^2 - dm^2 - cm^2 - mm^2)$

Quadratkilometer	Hektar	Ar	Quadratmeter
1 km ² =	100 ha	= 10 000 a	
nfláche 73, 82	1 ha	= 100 a 100 a	= 10 000 m ²
38 (11.35 (2	tuale ·	1 a	= 100 m ²

Quadratmeter Quadratdezimeter		Quadratzentimeter	Quadratmillimeter
1 m ²	= 100 dm ²	= 10 000 cm ²	as nothing
- " CN .0E .57" PE	1 dm ²	= 100 cm ² =	= 10 000 mm ²
	. Xequiti	1 cm ² =	= 100 mm ²

 $1 \, dm^3 = 1 \, l$

Volumen umrechnen

 $(m^3 - dm^3 - cm^3 - mm^3)$

Kubik- meter	Kubik- dezimeter	Kubik- zentimeter	Kubik- millimeter
1 m ³ =	= 1000 dm ³	ertodernosV	*
- 9	1 dm ³ =	= 1000 cm ³	-
		1 cm ³ =	= 1000 mm ³

(hl - l - cl - ml)

Hekto- liter	Liter	Zenti- liter	Milli- liter
1 hl	= 100 <i>l</i>	amirant	iA sijetine
ene#	1 l	= 100 cl	= 1000 ml
16161		1 cl	= 10 ml

35

Zeitspanne umrechnen

(d - h - min - s - ms)

Tag	Stunde	Minute	Sekunde	Millisekunden
1 d -	= 24 h	76, 82	nemuloV -	aktor 113, 116
in British	1 h	= 60 min	= 3600 s	= 3600000 ms
		1 min	= 60 s	= 60000 ms
	Kandustera	68.5	1 s	= 1000 ms

Masse umrechnen

$$(t-kg-g-mg)$$

Tonne	Kilogramm	Gramm	Milligramm
1 t	= 1000 kg		
	1 kg =	1000 g	
		1 g	= 1000 mg

Besondere Masse-Einheiten

(Doppelzentner dz – Zentner ztr – kg – Pfund Pfd)

Doppelzentner	Zentner	Kilogramm	Pfund
1 dz	2 ztr	= 100 kg	20 moledurian
	nepest 1 ztr	= 50 kg =	100 Pfd
5	783PH -	1 kg	2 Pfd

Zusammengesetzte Größen und ihre Einheiten

Geschwindigkeit

 $\left(\text{Meter pro Sekunde } \frac{m}{s} - \text{Kilometer pro Stunde } \frac{km}{h}\right)$

Geschwindigkeit = $\frac{Weg}{Zeit}$

Direktes Umrechnen von $\frac{m}{s}$ in $\frac{km}{h}$

Direktes Umrechnen von $\frac{km}{h}$ in $\frac{m}{s}$

$$\frac{m}{s} \xrightarrow{\cdot 3,6} \frac{kn}{h}$$

$$\frac{km}{h} \xrightarrow{: 3,6} \frac{m}{s}$$

36

Stundenlohn

(Euro pro Stunde $\frac{\epsilon}{h}$)

Stundenlohn =
$$\frac{Lohn}{Arbeitszeit}$$

Stundenlohn =
$$\frac{36 \cdot \epsilon}{3 \cdot h} = 12 \cdot \frac{\epsilon}{h}$$

Dichte

(Gramm pro Kubikzentimeter $\frac{g}{cm^3}$ - Kilogramm pro Kubikdezimenter $\frac{kg}{dm^3}$ - Tonne pro Kubikmeter $\frac{t}{m^3}$)

Dichte =
$$\frac{Masse}{Volumen}$$
 $\varrho = \frac{m}{V}$

$$Q = \frac{m}{V}$$

Direktes Umrechnen von Dichten:

1 cm³ Wasser wiegt 1 g

$$1 \frac{g}{cm^3} = 1 \frac{kg}{dm^3} = 1 \frac{t}{m^3}$$

$$\rightarrow$$
 Dichte Wasser = $1 \frac{g}{cm^3}$

feste Stoffe (in g/cm³)

Aluminium	2,70	Kork	0,48 - 0,52
Blei	11,34	Kupfer	8,96
Diamant	3,51	Magnesium	1,73
Eisen	7,86	Papier	0,7-1,2
Glas	2,2 - 2,6	Platin	21,4
Gold	19,3	Silber	10,5
Graphit	2,26	Stahl	7,8
Holz	0,5 - 1,3	Zink	7,14

Flüssigkeiten (in g/cm³)

Aceton	0,79	Petroleum	0,8
Benzin	0,75	Quecksilber	13,58
Dieselkraftstoff	0,83	Spiritus	0,83
Erdöl	0,7-0,9	Wasser	1,0

Gase bei 0°C und 101,3 kPa (in g/dm³)

Ammoniak	0,77	Luft	1,29
Chlor	3,214	Propan	2,01
Erdgas	0,73 - 0,83	Sauerstoff	1,429
Helium	0,179	Stickstoff	1,251
Kohlendioxid	1,977	Wasserstoff	0,0899

37

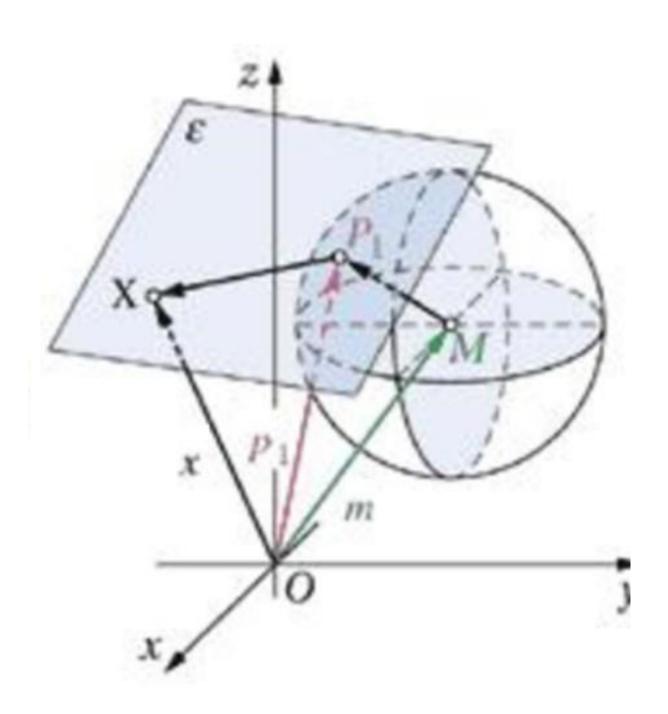
Mathematische Zeichen				
=	gleich	sin	Sinus	
‡	nicht gleich, ungleich	cos	Kosinus	
<	kleiner als	tan	Tangens	
≦	kleiner oder gleich	a	Betrag von a	
>	größer als	Σ	Summe	
≧	größer oder gleich	€	Element von	
≈	ungefähr gleich, rund, etwa	#	nicht Element von	
△	entspricht	{}; Ø	Leere Menge	
~	proportional, ähnlich (geom.)	$\{x x=.$	Menge aller x , für die gilt: $x =$	
≅	kongruent, deckungsgleich	<u>C</u>	Teilmenge von	
	parallel zu	_	echte Teilmenge von	
1	rechtwinklig zu, senkrecht auf	D	Definitionsmenge	
4	Winkel	L	Lösungsmenge	
∢(g, h)	Winkel zwischen g und h	IN	Menge der natürlichen Zahlen	
∢ASB	Winkel ASB mit dem Scheitel S	Z	Menge der ganzen Zahlen	
D	rechter Winkel (90°)	Q	Menge der rationalen Zahlen	
\overline{AB}	Strecke mit den Endpunkten A und B	IR	Menge der reellen Zahlen	
AB	Gerade durch die Punkte A und B	∞	unendlich	

Griechisches Alphabet		
Griech	nisches Alphabet	
α; Α	Alpha	v; N Ny
β; Β	Beta	ξ; Ξ Xi
γ; Γ	Gamma	o; O Omikron
δ; Δ	Delta	π; П Рі
ε; Ε	Epsilon	ę; P Rho
ζ; Z	Zeta	σ; Σ Sigma
η; Η	Eta	τ; T Tau
ϑ; Θ	Theta	υ; Y Ypsilon
ι; Ι	Jota	φ; Φ Phi
и; K	Карра	χ; X Chi
λ; Λ	Lambda	ψ; Ψ Psi
μ; M	My	ω; Ω Omega

			R	kömische Z	ahlen		
Röm	ische Zal	nlzeichen					
I	V	X	L	С	D	M	
1	5	10	50	100	500	1000	

Physikalische Formeln

Größe	Formel	Formel in Worten	Einheit
Kraft F			1 N (Newton)
			100 g = 1 N
			1000 g = 1 kg = 10 N
Masse m			1 mg, 1 g , 1 kg, 1 t
Druck p	$p = \frac{F}{A}$	$Druck = \frac{Kraft}{Fl\ddot{a}che}$	1 Pa (Pascal) = $1 \frac{N}{m^2}$
Federkonstante D	$D = \frac{F}{}$	Federkonstante = $\frac{Kraft}{}$	1 N
(Hooksches Gesetz)	$D - \frac{s}{s}$	Strecke	$\frac{1}{cm}$
Anziehungsfaktor g	\mathcal{F}	Anziehungsfaktor =	
	$g = \frac{1}{m}$	Gewichtskraft	₁ N
		Masse	$\int_{0}^{1} \frac{1}{kg}$
			Anziehungsfaktor g
			auf der Erde:
			$\frac{9.81N}{1.00} \approx 10 \frac{N}{1.00}$
			$\frac{1}{1kg} \approx 10 \frac{1}{kg}$


Größe	Formel	Formel in Worten	Einheit
Mechanische Arbeit W	$W = F \cdot s$	Arbeit = Kraft · Weg	1 J (Joule) = 1 Nm
(Energie)			
Hubarbeit W	$W = F \cdot h$	Hubarbeit =	
		Kraft · Höhe	
Drehmoment D	$D = F \cdot a$	Drehmoment =	1 Nm
		Kraft · Hebelarm	
Hebelgesetz	$F_1 \cdot a_1 = F_2 \cdot a_2$	Lastkraft 1 · Lastarm 1	
		=	
Linksdrehmoment =		Lastkraft 2 · Lastarm 2	
Rechtsdrehmoment			
Mechanische Leistung P	$P = \frac{W}{t}$	Leistung = $\frac{Arbeit}{Zeit}$	$1 \text{ W (Watt)} = 1 \frac{J}{s}$
			$1 \text{ W (Watt)} = 1 \frac{Nm}{s}$

Größe	Formel	Formel in Worten	Einheit
Spannung U			1 V (Volt) = 1000 mV
Stromstärke I			1 A (Ampere) =
			1000 mA
Widerstand R	$R = \frac{U}{I}$	$Widerstand = \frac{Spannung}{Stromstärke}$	$1 \frac{V}{A} = 1 \Omega \text{ (Ohm)}$
Elektrische	$P = U \cdot I$	Leistung = Spannung ·	1 VA (Voltampere)
Leistung P		Stromstärke	
(Energie)			= 1 W (Watt)
Elektrische	$W = U \cdot I \cdot t$	Arbeit = Spannung ·	1 Wh (Wattstunde)
Arbeit W		Stromstärke · Zeit	1 kWh (Kilowattstunde)

	Inhaltsverzeichnis			
Stochastik (Wahrscheinlichkeit)				
1	Grundbegriffe	Urliste, Randliste, Strichliste, Häufigkeitsliste, Absolute Häufigkeit, Relative Häufigkeit		
1	Statistische Kennwerte	Mittelwert, Zentralwert, Modalwert, Minimalwert, Maximalwert, Spannweite		
2	Wahrscheinlichkeitsrechnung	P(E), mehrstufige Zufallsversuche		
3	Ziehen von Kugeln			
3	Vierfeldertafel			
3	Zehnerpotenzen	Bezeichnungen der Vorsilben		
4	Potenzen	Potenzgesetze		
4	Wurzeln	Quadratwurzel bis n-te Wurzel		
5	Wachstum	Lineares Wachstum, exponentielles Wachstum		
6	Rechenarten	Bezeichnung und Sprechweisen		
6	Rechengesetze	Kommutativgesetz, Assoziativgesetz,		
	C	Distributivgesetz		
6	Plusklammer und Minusklammer	Auflösen der Klammern		
6	Rechenregeln bei rationalen Zahlen			
7	Binomische Formeln			
7	Gleichungen			
7	Lineare Gleichungssysteme			
8	Quadratische Gleichungen	Rein quadratische Gleichungen,		
	Ţ.	Gemischt quadratische Gleichungen,		
		p,q-Formel		
		Quadratische Ergänzung		
9	Funktionen	Proportionale Funktionen, Lineare Funktionen,		
		Quadratische Funktionen		
10	Quadratische Funktionen	Parabeln der Form $y = ax^2$,		
		Parabeln der Form $y = ax^2 + c$		
11		Parabeln der Form $y = a(x + b)^2$		
		Parabeln der Form $y = a(x + b)^2 + c$		
		Schnittpunkte von zwei Funktionen bestimmen		
12	Trigonometrie	Kongruente Dreiecke, ähnliche Dreiecke		
13	6	Strahlensätze		
13		Verhalten von Winkeln an sich schneidenden		
		Geraden		
14		Winkelfunktionen (sin, cos, tan)		
=		Besondere Werte		
15		Sinus, Kosinus und Tangens im Einheitskreis		

15		Sinusfunktion als Graph
15		Sinusfunktion und Kosinusfunktion
		als Zusammenschau
16	Kreis und Kreisteile	Benennungen im Kreis, Umfang, Flächeninhalt.
		Kreisring
17		Kreisausschnitt, Kreisbogen, Bogenmaß,
		Kreisabschnitt (Segment)
18	Kreis und Dreieck	Satz des Thales, Satz vom Umfangswinkel,
		Umkreis, Inkreis
19	Dreiecke	Dreiecksarten, Umfang, Flächeninhalt,
		Winkelsumme
20		Seitenhalbierende und Schwerpunkt
		Satz des Pythagoras
		Höhensatz, Kathetensatz
21	Vierecke	Allgemeines Viereck, Winkelsumme im Viereck
		Quadrat, Raute, Drachen
22		Rechteck, Parallelogramm, Trapez,
		Regelmäßiges Sechseck, regelmäßiges n-Eck,
		Winkelsumme im n-Eck, Anzahl der Diagonalen
		im n-Eck
23	Geometrische Körper	Würfel, Quader, Prisma
24		Regelmäßiges Sechseckprisma, Kreiszylinder
25		Pyramide
26		Regelmäßige Sechseckspyramide,
		regelmäßige n-Ecks-Pyramide, Kegel
27		Kugel, regelmäßige Körper (Platonische Körper)
28		Pyramidenstumpf
29		Kegelstumpf
30	Prozentrechnen	Grundwert G, Prozentwert P, Prozentsatz p%
		Vermehrter Grundwert, verminderter Grundwert
0.1	D 111 1	Darstellung von Prozentsätzen in Diagrammen
31	Promillerechnung	
31	Begriffe bei der Warenkalkulation	W 11 W 71
32	Zinsrechnung	Kapital K, Zinsen Z, Zinssatz p%,
		Monatszinsen, Tageszinsen, Sparformen
22	Dutted and Durant	(Zuwachssparen)
33	Brüche und Bruchrechnen	Notificial of Tables Comes 7-11
33	Zahlenmengen	Natürliche Zahlen, Ganze Zahlen
24	Carolan and the Fight is	Rationale Zahlen, Reelle Zahlen
34	Größen und ihre Einheiten	Längen, Flächen, Volumen

35	Größen und ihre Einheiten	Zeitspanne, Masse
35	Zusammengesetzte Größen	Geschwindigkeit
36		Stundenlohn, Dichte, Dichte von Stoffen
37	Mathematische Zeichen	
37	Griechisches Alphabet	
37	Römische Zahlen	
38	Physikalische Formeln	Kraft F, Masse m, Druck p, Federkonstante D, Anziehungsfaktor g, Mechanische Arbeit W,
		Hubarbeit W, Drehmoment D, Hebelgesetze,
		Mechanische Leistung P
39		Spannung U, Stromstärke I, Widerstand R,
		Elektrische Leistung P, Elektrische Arbeit W

